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Now, let us consider the motion of a car that
starts from rest at time t = 0 s from the origin O
and picks up speed till t = 10 s and thereafter
moves with uniform speed till t = 18 s. Then the
brakes are applied and the car stops at
t = 20 s and x = 296 m. The position-time graph
for this case is shown in Fig. 3.3. We shall refer
to this graph in our discussion in the following
sections.

3.3  AVERAGE VELOCITY AND AVERAGE
SPEED

When an object is in motion, its position
changes with time.  But how fast is the position
changing with time and in what direction?  To
describe this, we define the quantity average
velocity. Average velocity is defined as the
change in position or displacement (∆x) divided
by the time intervals (∆t), in which the
displacement occurs :
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where x
2
  and x

1
 are the positions of the object

at time t
2
and  t

1
, respectively. Here the bar over

the symbol for velocity is a standard notation
used to indicate an average quantity.  The SI
unit for velocity is m/s or m s–1, although km h–1

is used in many everyday applications.
Like displacement, average velocity is also a

vector quantity. But as explained earlier, for
motion in a straight line, the directional aspect
of the vector can be taken care of by + and –
signs and we do not have to use the vector
notation for velocity in this chapter.

Fig. 3.4 The average velocity is the slope of line P
1
P

2
.

Consider the motion of the car in Fig. 3.3. The
portion of the x-t graph between t = 0 s and t = 8
s is blown up and shown in Fig. 3.4.  As seen
from the plot, the average velocity of the car
between time t = 5 s and t = 7 s is :
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Geometrically, this is the slope of the straight
line P

1
P

2
 connecting the initial position 

1
P  to

the final position P
2
   
as

   
shown in Fig. 3.4.

The average velocity can be positive or negative
depending upon the sign of the displacement. It
is zero if the displacement is zero. Fig. 3.5 shows
the x-t graphs for an object, moving with positive
velocity (Fig. 3.5a), moving with negative velocity
(Fig. 3.5b)  and at rest (Fig. 3.5c).

Average velocity as defined above involves
only the displacement of the object. We have seen
earlier that the magnitude of displacement may
be different from the actual path length. To
describe the rate of motion over the actual path,
we introduce another quantity called average
speed.

Average speed  is defined as the total path
length travelled divided by the total time
interval during which the motion has taken
place :

Average speed
Total path length

Total time interval 
=   (3.2)

Average speed has obviously the same unit
(m s–1) as that of velocity.  But it does not tell us
in what direction an object is moving.  Thus, it
is always positive (in contrast to the average
velocity which can be positive or negative). If the
motion of an object is along a straight line and
in the same direction, the magnitude of
displacement is equal to the total path length.
In that case, the magnitude of average velocity

Fig. 3.5 Position-time graph for an object (a) moving

with positive velocity, (b) moving with

negative velocity, and (c) at rest.
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t

is equal to the average speed.  This is not always
the case, as you will see in the following example.

Example 3.1 A car is moving along a
straight line, say OP in Fig. 3.1.  It moves
from O to P in 18 s and returns from P to Q
in 6.0 s.  What are the average velocity
and average speed of the car in going (a)
from O to P ? and (b) from O to P and back
to Q ?

Answer    (a)

 Average velocity
Displacement

Time interval 
=

   1+ 360 m 
20 m s

18 s
v −= = +

     Average speed  
Path length

Time interval
=

                
1360 m 

= 20 m s
18 s

−=

Thus, in this case the average speed is equal to
the magnitude of the average velocity.
(b) In this case,

( )
240 m

18 6.0  s

Displacement 
Average velocity =

Time interval 

+
=

+

                            -1=+10 ms

OP + PQPath length
Average speed = =

Time interval t∆

 
( ) -1360+120  m

= = 20 m s
24 s

Thus, in this case the average speed is not equal
to the magnitude of the average velocity. This
happens because the motion here involves
change in direction so that the path length is
greater than the magnitude of displacement.
This shows that speed is, in general, greater
than the magnitude of the velocity. t

If the car in Example 3.1 moves from O to P

and comes back to O in the same time interval,
average speed is 20 m/s but the average velocity
is zero !

3.4  INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval.  For this,
we define instantaneous velocity or simply
velocity v at an instant t.

The velocity at an instant is defined as the
limit of the average velocity as the time interval
∆t becomes infinitesimally small. In other words,

v lim
x

t
=

t  0∆ 

∆

∆→
(3.3a)

  =
d

d

x

t

(3.3b)

where the symbol 
lim

t 0∆ →
 stands for the operation

of taking limit as  ∆tg0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (3.3a) is the
differential coefficient of x with respect to t and

is denoted by 
 

d

d

x

t
 (see Appendix 3.1).  It is the

rate of change of position with respect to time,

at that instant.

We can use Eq. (3.3a) for obtaining the value
of velocity at an instant either graphically or
numerically. Suppose that we want to obtain
graphically the value of velocity at time  t = 4 s
(point P) for the motion of the car represented
in Fig. 3.3. The figure has been redrawn in
Fig. 3.6 choosing different scales to facilitate the

Fig. 3.6 Determining velocity from position-time

graph.  Velocity at t = 4 s is the slope of the

tangent to the graph at that instant.
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calculation. Let us take ∆t = 2 s centred at
t = 4 s. Then, by the definition of the average
velocity, the slope of line P1P2  ( Fig. 3.6) gives
the value of average velocity over the interval
3 s to 5 s.  Now, we decrease the value of ∆t from
2 s to 1 s.  Then line P1P2 becomes Q1Q2   and its
slope gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit ∆t → 0,
the line P

1
P

2
 becomes tangent to the position-

time curve at the point P and the velocity at t =
4 s is given by the slope of the tangent at that
point. It is difficult to show this process
graphically. But if we use numerical method
to obtain the value of the velocity, the
meaning of the limiting process becomes
clear. For the graph shown in
Fig. 3.6, x = 0.08 t3.  Table 3.1 gives the value of
∆x/∆t calculated for ∆t equal to 2.0 s, 1.0 s, 0.5
s, 0.1 s and 0.01 s centred at t = 4.0 s. The
second and third columns give the value of t

1
=

t
t

2
−











∆
 and t t

t

2
2 = +











∆
 and the fourth and

the fifth columns give the corresponding values

of x, i.e. x (t
1
) = 0.08 t

1

3
 and x (t

2
) = 0.08 t2

3. The
sixth column lists the difference ∆x = x (t

2
) – x

(t
1
) and the last column gives the ratio of ∆x and

∆t, i.e. the average velocity corresponding to the
value of ∆t listed in the first column.

We see from Table 3.1 that as we decrease
the value of ∆t from 2.0 s to 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s–1 which is the value of velocity at

t = 4.0 s, i.e. the value of  
d

d

x

t
 at t = 4.0 s. In this

manner, we can calculate velocity at each

instant for motion of the car shown in Fig. 3.3.
For this case, the variation of velocity with time
is found to be as shown in Fig. 3.7.

Fig. 3.7 Velocity–time graph corresponding to motion

shown in Fig. 3.3.

The graphical method for the determination
of the instantaneous velocity is always not a
convenient method.  For this, we must carefully
plot the position–time graph and calculate the
value of average velocity as ∆t becomes smaller
and smaller.  It is easier to calculate the value
of velocity at different instants if we have data
of positions at different instants or exact
expression for the position as a function of time.
Then, we calculate ∆x/∆t from the data for
decreasing the value of ∆t and find the limiting
value as we have done in Table 3.1 or use
differential calculus for the given expression and

calculate 
d

d

x

t
 at different instants as done in

the following example.

Table 3.1  Limiting value of 
∆

∆

x

t
 at t = 4 s
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Example 3.2    The position of an object

moving along x-axis is given by   x = a + bt2

where  a = 8.5 m, b = 2.5 m s–2 and t is

measured in seconds. What is its velocity at

t = 0 s and t = 2.0 s. What is the average

velocity between t = 2.0 s and t = 4.0 s ?

Answer  In notation of differential calculus, the
velocity is

( )v
x

t t
a bt 2b t =  

2
= = + =

d

d

d

d
5.0 t m s

-1
 

At   t = 0 s,      v = 0 m s–1   and at   t = 2.0 s,
v = 10 m s-1 .

( ) ( )4.0 2.0

4.0 2.0

x x
Average velocity

−
=

−

        
16 – – 4

6.0
2.0

a b a b
b

+
= = ×

        -16.0 2.5 =15 m s= ×             t

From Fig. 3.7, we note that during the period
t =10 s to 18 s the velocity is constant. Between
period t =18 s to t = 20 s, it is uniformly
decreasing  and  during  the  period t = 0 s to     t
= 10 s, it is increasing. Note that for uniform
motion, velocity is the same as the average
velocity at all instants.

Instantaneous speed or simply speed is the
magnitude of velocity. For example, a velocity of
+ 24.0 m s–1 and a velocity of – 24.0 m s–1 — both
have an associated speed of 24.0 m s-1.  It should
be noted that though average speed over a finite
interval of time is greater or equal to the
magnitude of the average velocity,
instantaneous speed at an instant is equal to
the magnitude of the instantaneous velocity at
that instant. Why so ?

3.5  ACCELERATION

The velocity of an object, in general, changes
during its course of motion. How to describe this
change? Should it be described as the rate of
change in velocity with distance or with time ?
This was a problem even in Galileo’s time. It was
first thought that this change could be described
by the rate of change of velocity with distance.
But, through his studies of motion of freely falling
objects and motion of objects on an inclined
plane, Galileo concluded that the rate of change
of velocity with time is a constant of motion for
all objects in free fall. On the other hand, the
change in velocity with distance is not constant
– it decreases with the increasing distance of fall.

This led to the concept of acceleration as the rate
of change of velocity with time.

 The average acceleration a  over a time

interval is defined as the change of velocity
divided by the time interval :

2 1

2 1

–

–

v v va
t t t

∆
= =

∆ (3.4)

where v2 and v1 are the instantaneous velocities
or simply velocities at time  t2

 
and t1

 
. It is the

average change of velocity per unit time. The SI
unit of acceleration is m s–2 .

On a plot of velocity versus time, the average
acceleration is the slope of the straight line
connecting the points corresponding to (v2, t2)
and (v1, t1). The average acceleration
for     velocity-time graph shown in Fig. 3.7 for
different time intervals 0 s - 10 s, 10 s – 18 s,
and 18 s – 20 s are :

0 s - 10 s
( )

( )

–1
–224 – 0 m s

2.4 m s
10 – 0 s

a = =

10 s - 18 s   
( )

( )

–1
–224 – 24 m s

0 m s
18 – 10 s

a = =

18 s - 20 s    
( )

( )

–1
–20 – 24 m s

– 12 m s
20 – 18 s

a = =

Fig. 3.8 Acceleration as a function of time for motion

represented in Fig. 3.3.

Instantaneous acceleration is defined in the same
way as the instantaneous velocity :

d

dt 0

v v
a lim

t t∆ →

∆
= =

∆
(3.5)

The acceleration at an instant is the slope of
the tangent to the v–t curve at that instant.  For
the v–t curve shown in  Fig.  3.7, we can obtain
acceleration at every instant of time. The
resulting a – t curve is shown in Fig. 3.8. We see

 a
 (
m

 s
–
2
)
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that the acceleration is nonuniform over the
period  0 s to 10 s. It is zero between 10 s and
18 s and is constant with value –12 m s–2

between 18 s and 20 s. When the acceleration
is uniform, obviously, it equals the average
acceleration over that period.

Since velocity is a quantity having both
magnitude and direction, a change in velocity
may involve either or both of these factors.
Acceleration, therefore, may result from a
change in speed (magnitude), a change in
direction or changes in both.  Like velocity,
acceleration can also be positive, negative or
zero.  Position-time graphs for motion with
positive, negative and zero acceleration are
shown in Figs. 3.9 (a), (b) and (c), respectively.
Note that the graph curves upward for positive
acceleration; downward for negative
acceleration and it is a straight line for zero
acceleration. As an exercise, identify in Fig. 3.3,
the regions of the curve that correspond to these
three cases.

Although acceleration can vary with time,
our study in this chapter will be restricted to
motion with constant acceleration. In this case,
the average acceleration equals the constant
value of acceleration during the interval. If the
velocity of an object is v

o
 at t = 0 and v at time t,

we have

          or
0

0
0

v v
a   ,  v v a t

t

−
= = +

−
(3.6)

Fig. 3.9 Position-time graph for motion with

(a) positive acceleration; (b) negative

acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 3.10 shows     velocity-
time graph for motion with constant acceleration
for the following cases :

(a) An object is moving in a positive direction
with a positive acceleration, for example
the motion of the car in  Fig. 3.3 between
t = 0 s and t = 10 s.

(b) An object is moving in positive direction
with a negative acceleration, for example,
motion of the car in Fig 3.3 between
t = 18 s and 20 s.

(c) An object is moving in negative direction
with a negative acceleration, for example
the motion of a car moving from O in Fig.
3.1 in negative x-direction with
increasing speed.

(d) An object is moving in positive direction
till time t1

, and then turns back with the
same negative acceleration, for example
the motion of a car from point O to point
Q in Fig. 3.1 till time t1 with decreasing
speed and turning back and moving with
the same negative acceleration.

An interesting feature of a velocity-time graph
for any moving object is that the area under the
curve represents the displacement over a
given time interval. A general proof of this

Fig. 3.10 Velocity–time graph for motions with

constant acceleration. (a) Motion in positive

direction with positive acceleration,

(b) Motion in positive direction with

negative acceleration, (c) Motion in negative

direction with negative acceleration,

(d) Motion of an object with negative

acceleration that changes direction at time

t
1
.  Between times 0 to t

1
, its moves in

positive x - direction and between t
1
 and

t
2
 it moves in the opposite direction.
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statement requires use of calculus. We can,
however, see that it is true for the simple case of
an object moving with constant velocity u. Its
velocity-time graph is as shown in Fig. 3.11.

Fig. 3.11 Area under v–t curve equals displacement

of the object over a given time interval.

The v-t curve is
 
a straight line parallel to the

time axis and the area under it between t = 0
and t = T

  
is the area of the rectangle of height u

and base T. Therefore, area = u × T = uT which
is the displacement in this time interval.  How
come in this case an area is equal to a distance?
Think!  Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer.

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these
points. In any realistic situation, the
functions will be differentiable at all points
and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous.

3.6 KINEMATIC EQUATIONS FOR
UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
some simple equations that relate displacement
(x), time taken (t), initial velocity (v

0
), final

velocity (v) and acceleration (a). Equation (3.6)
already obtained gives a relation between final
and initial velocities v and  v

0  
of an object moving

with uniform acceleration
 
a :

             v = v
0
 + at (3.6)

This relation is graphically represented in Fig. 3.12.
The area under this curve is :
Area between instants 0 and t = Area of triangle
ABC + Area of rectangle OACD

 
( )– 0 0

1
v v t + v t

2
=

Fig. 3.12 Area  under v-t curve for an object with

uniform acceleration.

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

( )1
–

2
0 0x v v t + v t= (3.7)

But v v a t0− =

Therefore,
2

0

1

2
x a t + v t=

or,
2

0

1

2
x v t at= + (3.8)

Equation (3.7) can also be written as

0

2

v + v
x t v t= = (3.9a)

where,

0

2

v v
v

+
=   (constant acceleration only)

(3.9b)

Equations (3.9a) and  (3.9b) mean that the object
has undergone displacement x with an average
velocity equal to the arithmetic average of the
initial and final velocities.
From Eq. (3.6), t = (v – v

0
)/a. Substituting this in

Eq. (3.9a), we get

       x v t
v v v v

a

v v

a
= =

+





−





=
−0 0

2
0
2

2 2

     2 2
0 2v v ax= + (3.10)
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This equation can also be obtained by
substituting the value of t from Eq. (3.6) into
Eq. (3.8). Thus, we have obtained three
important equations :

0v v at= +

         
2

0

1

2
x v t at= +

2 2
0 2v v ax= + (3.11a)

connecting five quantities v0,  v, a, t and x.  These
are kinematic equations of rectilinear motion
for constant acceleration.

The set of Eq. (3.11a) were obtained by
assuming that at t = 0, the position of the
particle, x is 0.  We can obtain a more general
equation if we take  the  position coordinate at t
= 0 as non-zero, say x

0
.  Then Eqs. (3.11a) are

modified (replacing x by x – x
0
 ) to :

0v v at= +

2
0 0

1

2
x x v t at= + + (3.11b)

2 2
0 02 ( )v v a x x= + − (3.11c)

Example 3.3 Obtain equations of motion
for constant acceleration using method of
calculus.

Answer  By definition

d

d

v
a

t
=

 dv = a dt

Integrating both sides

d dv a t
v

v t

0 0∫ ∫=

= ∫a t
t

d
0

         (a is constant)

0–v v at=

       0v v at= +

Further,        
d

d

x
v

t
=

      dx = v dt

Integrating both sides

dx
x

x

0
∫ = ∫ v t

t

d
0

= +( )∫ v at t
t

0
0

d

2
0 0

1
–

2
x x v t a t= +

      x   = 
2

0 0

1

2
x v t a t+ +

We can write

d d d d

d d d d

v v x v
a v

t x t x
= = =

or, v dv = a dx

Integrating both sides,

v v a x
v

v

x

x

d d
0 0

∫ ∫=

( )
2 2

0
0

–
–

2

v v
a x x=

( )2 2
0 02 –v v a x x= +

The advantage of this method is that it can be

used for motion with non-uniform acceleration

also.

Now, we shall use these equations to some
important cases. t

Example 3.4 A ball is thrown vertically
upwards with a velocity of 20 m s–1 from
the top of a multistorey building. The
height of the point from where the ball is
thrown is 25.0 m from the ground. (a) How
high will the ball rise ?  and (b) how long
will it be before the ball hits the ground?
Take g = 10 m s–2.

Answer  (a) Let us take the y-axis in the

vertically upward direction with zero at the

ground, as shown in Fig. 3.13.

Now  v
o
 
= + 20 m s–1,

   a  =  – g = –10 m s–2,

   v  =  0 m s–1

If the ball rises to height y from the point of

launch, then using the equation

( )0   2 2
0v v 2 a y – y= +

we get

0 = (20)2 + 2(–10)(y – y
0
)

Solving,  we get, (y – y
0
) = 20 m.

(b) We can solve this part of the problem in two

ways.  Note carefully the methods used.

t
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Fig. 3.13

FIRST METHOD :  In the first method, we split
the path in two parts : the upward motion  (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t

1
 and

t
2
.  Since the velocity  at B is zero, we have :
                  v  =  v

o
 +  at

0 = 20  – 10t
1

Or,            t
1 
= 2 s

This is the time in going from A to B.  From B, or
the point of  the maximum height, the ball falls
freely under the acceleration due to gravity.  The
ball is moving in negative y direction.  We use
equation

          
2

0 0

1

2
y y v t at= + +

We have, y
0
 = 45 m, y = 0, v

0
 = 0, a = – g  = –10 m s–2

   0  =  45 + (½) (–10) t
2

2

Solving, we get t
2
 = 3 s

Therefore, the total time taken by the ball before
it hits the ground = t

1 
+

   
t
2
  = 

 
2

  
s

 
+ 3 s = 5 s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of
initial and final positions of the ball with respect
to the origin chosen and using equation

2
0 0

1

2
y y v t at= + +

Now y
0  

=
  
25 m        y = 0 m

v
o
 = 20 m s-1, a  = –10m s–2,  t  =  ?

0 = 25  +20 t  + (½)  (-10) t2

Or, 5t2 – 20t  – 25  =  0

Solving this quadratic equation for t, we get

t = 5s

Note that the second method is better since we
do not have to worry about the path of the motion
as the motion is under constant acceleration.

  t

Example 3.5  Free-fall : Discuss the
motion of an object under free  fall.  Neglect
air resistance.

Answer  An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g.  If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to   9.8 m s–2. Free fall is thus a case of
motion with uniform acceleration.

We assume that the motion is in y-direction,
more correctly in –y-direction because we
choose upward direction as positive. Since the
acceleration due to gravity is always downward,
it is in the negative direction and we have

a = – g  = – 9.8 m s–2

The object is released from rest at y = 0. Therefore,
v

0
 = 0 and the equations of motion become:

v =  0 – g t       = –9.8 t      m s–1

y =  0 – ½  g t2   = –4.9 t 2    m
v2 = 0 – 2 g y     = –19.6 y   m2 s–2

These equations give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The
variation of acceleration, velocity, and distance,
with time have been plotted in Fig.  3.14(a), (b)
and (c).

(a)
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(b)

      (c)

Fig. 3.14 Motion of an object under free fall.
(a)  Variation of acceleration with time.
(b) Variation of velocity with time.

(c) Variation of distance with time t

Example 3.6 Galileo’s law of odd
numbers : “The distances traversed, during

equal intervals    of time, by a body falling

from rest, stand to one another in the same

ratio as the odd numbers beginning with

unity [namely, 1: 3: 5: 7…...].”  Prove it.

Answer  Let us divide the time interval of
motion of an object under free fall into many
equal intervals

 
τ   and find out the distances

traversed during successive intervals of
time. Since initial velocity is zero, we have

Using this equation, we can calculate the

position of the object after different time

intervals, 0, τ, 2τ,  3τ… which are given in

second column of Table 3.2. If we take

(–1/
 
2) gτ2 as y

0 
— the position coordinate after

first time interval τ, then third column gives

the positions in the unit of y
o
. The fourth

column gives the distances traversed in

successive τs. We find that the distances are

in the simple ratio 1: 3: 5: 7: 9: 11… as  shown

in the last column. This  law was established

by Galileo Galilei (1564-1642) who was the first

to make quantitative studies of free fall. t

Example 3.7  Stopping distance of
vehicles : When brakes are applied to a
moving vehicle, the distance it travels before
stopping is called stopping distance.  It is
an important factor for road safety and
depends on the initial velocity (v

0
) and the

braking capacity, or deceleration, –a that
is caused by the braking. Derive an
expression for stopping distance of a vehicle
in terms of v

o
 and

 
a.

Answer  Let the distance travelled by the vehicle
before it stops be d

s
. Then, using equation of

motion  v2 = v
o
2 + 2 ax, and noting that  v = 0, we

have the stopping distance

d
v

a
s =

– 0
2

2

Thus, the stopping distance is proportional to
the square of the initial velocity. Doubling the

t

Table 3.2

y gt= −
1

2
2
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t

initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For  the car of a particular make, the braking
distance was found to be 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. t

Example 3.8  Reaction time :  When a
situation demands our immediate
action, it takes some time before we
really respond. Reaction time is the
time a person takes to observe, think
and act.  For example, if a person is
driving and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction time
by a simple experiment. Take a ruler
and ask your friend to drop it vertically
through the gap between your thumb
and forefinger (Fig. 3.15). After you
catch it, find the distance d travelled
by the ruler. In a particular case, d was
found to be 21.0 cm. Estimate reaction
time.

Or,

Given d = 21.0 cm and g = 9.8 m s–2  the reaction
time is

t

3.7  RELATIVE VELOCITY

You must be familiar with the experience of
travelling in a train and being overtaken by
another train moving in the same direction as
you are. While that train must be travelling faster
than you to be able to pass you, it does seem
slower to you than it would be to someone
standing on the ground and watching both the
trains. In case both the trains have the same
velocity with respect to the ground, then to you
the other train would seem to be not moving at
all.  To understand such observations, we now
introduce the concept of relative velocity.

Consider two objects A and B moving
uniformly with average velocities v

A
 and v

B
 in

one dimension, say along x-axis. (Unless
otherwise specified, the velocities mentioned in
this chapter are measured with reference to the
ground). If x

A
 (0) and x

B
 (0) are positions of objects

A and B, respectively at time t = 0, their positions
x

A
 (t) and x

B
 (t) at time t are given by:

x
A
 (t )  =  x

A
 (0)  +  v

A
  t     (3.12a)

x
B
 (t)   =  x

B
 (0)  +  v

B
 t               (3.12b)

Then, the displacement from object A to object
B is given by

x
BA

(t)  =  x
B
 (t)  –  x

A
 (t)

= [ x
B
 (0) – x

A
 (0) ] + (v

B
 – v

A
) t.      (3.13)

Equation (3.13) is easily interpreted. It tells us
that as seen from object A, object B has a
velocity v

B 
– v

A
 because the displacement from

A to B changes steadily by the amount v
B 
– v

A
 in

each unit of time. We say that the velocity of
object B relative to object A is v

B
 – v

A
 :

v
BA

  =  v
B 
 – v

A
(3.14a)

Similarly, velocity of object A relative to object B

is:
v

AB
  =  v

A
 – v

B
(3.14b)

Fig. 3.15   Measuring the reaction time.

Answer  The ruler drops under free fall.
Therefore, v

o
 = 0, and a = – g = –9.8 m s–2. The

distance travelled d and the reaction time t
r
 are

related by
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